
GNDStk Documentation
Release 1.0

Martin Staley

May 19, 2021

CONTENTS

1 INTRODUCTION & PRIMER 2
1.1 Introduction . 2

1.1.1 Description . 2
1.1.2 Background . 2
1.1.3 Acknowledgements . 2

1.2 Building GNDStk . 2
1.2.1 Download . 2
1.2.2 Build & Test . 2
1.2.3 Summary . 2
1.2.4 Your Own Application . 2
1.2.5 Alternative: Bash Script . 2
1.2.6 Header-Only Library . 2

1.3 Tutorial . 2
1.3.1 Basics + Core Interface . 2
1.3.2 Read and Write GNDS . 2
1.3.3 Data Structure “Direct” . 2
1.3.4 Smart Query System . 2
1.3.5 GNDS Creation . 2
1.3.6 Advanced Examples . 2

2 BASIC CONSTRUCTS 2
2.1 Primary Classes . 2

2.1.1 Tree . 2
2.1.2 Node . 2
2.1.3 XML . 2
2.1.4 JSON . 2

2.2 Node: Major Capabilities . 2
2.2.1 Query . 2
2.2.2 Add Data . 2

2.3 Functions . 2
2.3.1 foo . 2
2.3.2 bar . 2
2.3.3 etc . 2

2.4 Reading & Writing . 2
2.5 Miscellaneous Utilities . 2

2.5.1 Global Flags . 2
2.5.2 Diagnostics . 2
2.5.3 Other . 2

3 CORE INTERFACE 2

i

3.1 Motivation . 2
3.2 Query System, Part 1 . 2

3.2.1 Meta & Child . 2
3.2.2 Operators . 2
3.2.3 Query Metadata . 2
3.2.4 Query Child Nodes . 2

3.3 Query System, Part 2 . 2
3.3.1 Sequence Queries . 2
3.3.2 Multi-Queries . 2
3.3.3 Conversion & Filters . 2

3.4 Creating Data . 2
3.4.1 Direct . 2
3.4.2 Using “Query” Objects . 2

3.5 Conversion Scheme . 2
3.6 Advanced Topics . 2

4 HIGH-LEVEL INTERFACE 2
4.1 Component Base . 2

4.1.1 Motivation . 2
4.1.2 Capabilities . 2
4.1.3 Usage Requirements . 2

4.2 Main Structures . 2
4.2.1 Examples . 2

4.3 Field Concepts . 2
4.3.1 Required . 2
4.3.2 Optional . 2
4.3.3 Defaulted . 2

4.4 C++ Version-Specific . 2
4.4.1 GNDS v1.9 . 2
4.4.2 GNDS v2.0 . 2

4.5 Python Bindings . 2

5 SEARCH 2

6 REFERENCE 2
6.1 Core Classes . 2

6.1.1 Tree . 2
6.1.2 Node . 2
6.1.3 XML . 2
6.1.4 JSON . 2
6.1.5 Meta . 2
6.1.6 Child . 2
6.1.7 KeywordTup . 2

6.2 I/O and Related . 2
6.3 Node: Major Capabilities . 2

6.3.1 meta() . 2
6.3.2 one() and many() . 2
6.3.3 child() . 2
6.3.4 operator() . 2
6.3.5 operator[] . 2
6.3.6 MetaRef & ChildRef . 2

6.4 Meta & Child Operators . 2
6.5 convert() . 2

6.5.1 Tree/XML/JSON . 2

ii

6.5.2 For Metadata . 2
6.5.3 For Child Nodes . 2

6.6 Canned Keywords . 2
6.6.1 For Metadata . 2
6.6.2 For Child Nodes . 2
6.6.3 Special cases . 2

6.7 High-Level Support . 2
6.8 High-Level Interface . 2

6.8.1 GNDS Version 1.9 . 2
6.8.2 GNDS Version 2.0 . 2

6.9 Miscellaneous . 2

7 INDEX 2

iii

iv

1

GNDStk Documentation, Release 1.0

CHAPTER

ONE

INTRODUCTION & PRIMER

1.1 Introduction

1.1.1 Description
Los Alamos National Laboratory’s GNDS Toolkit, or
GNDStk, has been designed first and foremost to provide
a powerful, intuitive, and flexible C++ language API for
interacting with Generalized Nuclear Database Structure
data.
We begin by providing basic and cleanly-designed
classes in which GNDS data are stored. Next, we sup-
port a robust and flexible I/O system for reading from,
and writing to, both the XML and JSON file formats.
Support for more file formats is anticipated in the future,
as GNDS becomes more widely used.
While GNDStk is one library, from which you can use
any functionality you wish to at any time, we consider
it conceptually to consist of roughly three major parts:
basic constructs and I/O; a “core” interface, and a higher-
level interface that will also be equipped with Python
bindings for users who wish to take advantage of them.
Let’s say a bit more about all of these elements.
BASICS
Here we have the basic requisite data structures and
functions, as well as flexible and easy-to-use GNDS file
I/O capabilities. Along with these also come, of course,
the numerous and sundry utilities needed for their im-
plementation. Some of the utilities, e.g. those for gener-
ating diagnostic messages such as warnings and errors,
may be of value in their own right to our users. We’ll
therefore provide some documentation of how selected
utility constructs work, without distracting us from our
focus on GNDStk’s major, most interesting capabilities.
CORE INTERFACE
The heart of GNDStk lies in its Core Interface. Consider
this interface to include the basics as described above,
while adding to them a powerful, flexible, and highly
user-programmable suite of data query and creation ca-
pabilities that can be used to great effect by themselves
if you wish – given some knowledge of the GNDS hier-
archy’s internal structure – and also for creating higher-
level interfaces like our own.
Our Core Interface allows for version-independent ac-
cess to all data in any GNDS file, including functionality
for reading, writing, and modification.
We support both a more-traditional C++ API design,
in which users can interact with classes and functions
in the usual fashion (largely through the Basics as de-
scribed above), as well as a powerful and easily extensi-
ble “query system” for retrieving or creating GNDS con-
tent. The query system is, in particular, quite intention-
ally designed to enable you to integrate GNDStk’s capa-
bilities easily into virtually any other code in which you
might wish to use it – code that utilizes entirely your own
data structures, perhaps, or those of any other library or
libraries with which you may be working.
HIGH-LEVEL INTERFACE
While still a work-in-progress at the time of this writ-
ing, GNDStk’s High-Level Interface will be comprised
of several elements.
First, we’ll provide one or more C++ base classes that are
designed to provide value to high-level derived classes
that one might wish to create, individually or en masse,
to represent GNDS data structures. Note that, here, our
use of the word derived refers to derived classes in C++ –
not, say, to nuclear data that were derived in some sense
from other nuclear data.
Notably, and with support from the Core Interface,
proper handling will be made available for capturing the
concepts of a required field, an optional field, and an op-
tional, with default field in a GNDS data structure. Here,
and thinking in the language of XML, field may mean
something from an XML element’s attributes (we’ll pre-
fer the non-XML-specific term metadata in GNDStk),
or from its nested XML elements – child nodes, in our
preferred terminology.
An additional note regarding terminology: We may oc-
casionally write element to mean GNDS data as it would
appear in an XML element, if and when the term works
well in the narrative, but do so with the understanding
that GNDS data need not, of course, originate from an
XML source, or be intended for an XML destination.
We’ll also design GNDS version-specific collections of
high-level classes that represent important data struc-
tures for the GNDS version in question. Assuming that
the GNDS specifications don’t change a great deal be-
tween releases, we’ll expect to see substantial overlap,
across our version-specific collections, of these classes.
GNDStk will, naturally, handle such issues efficiently,
and will do so in a manner that’s entirely transparent to
users. We’ll focus on making our capabilities work well,
so that you can focus similarly on yours.
Finally, but no less significantly for many of GNDStk’s
intended beneficiaries, we’ll provide a suite of Python
bindings to much of our C++ functionality. That will in-
clude, certainly, the major classes in our version-specific
interfaces, and perhaps also – where reasonable and pos-
sible, given differences between Python and C++ as well
as their respective limitations - to selected fabulous and
action-packed lower-level Core Interface constructs as
well.

1.1.2 Background
The Generalized Nuclear Database Structure, or GNDS,
started at Lawrence Livermore National Laboratory as
an effort to update their ENDL format. Realizing that
they could also modernize the ENDF format for nu-
clear data, and make this modernization useful and avail-
able to everyone, they evolved GNDS to contain evalu-
ated data, processed data, and application data. GNDS
has become an international standard as part of the
OECD/NEA.

1.1.3 Acknowledgements
The author wishes to thank several individuals for the
support and ideas that they provided throughout this
endeavor. An introduction to GNDS, to the broader
NJOY21 project, and to the need for quality software for
working with the GNDS format, was provided by Nu-
clear Data team leader Jeremy Conlin. Materials and
Physical Data (XCP-5) group leader Patrick Talou tire-
lessly ensured financial support for the project, and pos-
itive encouragement for its personnel. Nathan Gibson
constructed the build system currently in use not only
for GNDStk but for many other elements of NJOY21.
Finally, Wim Haeck was a source of copious and invalu-
able comments, ideas, and discussions, without which
GNDStk wouldn’t be what it is today.
Martin Staley, Los Alamos National Laboratory,
February 2021

1.2 Building GNDStk
We designed GNDStk with the hope that it will prove
to be straightforward to download, to install, and to use.
GNDStk resides on Github, and uses CMake as its pri-
mary build system.
The following description is based on commands that
work for us, on a Linux system. Adapt our instructions
as necessary for your own platform.

1.2.1 Download
Enter the directory in which you’d like GNDStk to re-
side. This might be your root user directory, e.g. /home/
yourname/, or perhaps, say, in a dedicated directory that
you use for your projects.
Download:
git clone https://github.com/njoy/GNDStk.
→˓git

Enter directory:

cd GNDStk

At this point you can, if you wish, check out a specific
branch of GNDStk. As is typical in git repositories, our
main branch is called master. So, if you wish:
Check out a branch:
git checkout master

With master that isn’t necessary, but you can replace
master with something else.

1.2.2 Build & Test
Some people prefer, as you may, to create a build di-
rectory in which to build the project. (Doing as much
certainly helps to keep a project’s base directory more
free of clutter.) Continuing from the GNDStk directory,
where we left off in the Downloading narrative above:
Make and enter a build directory:

mkdir build
cd build

Now run cmake itself, being sure to point it one level
up, to where the CMakeLists.txt file resides, if you’re
indeed down in build.
Run cmake:
cmake ..

The good news is that the above command should down-
load GNDStk’s dependencies – the modest number of
outside C++ libraries on which it depends – automat-
ically. The bad news is that the download may, for the
same reason, take quite some time. Resist the temptation
to terminate the command, perhaps believing that your
computer has hung, and consider starting cmake .. be-
fore lunch hour if you have a slow Internet connection.
The main culprit appears to be the “nlohmann json” li-
brary, https://github.com/nlohmann/json. An excellent
library, by all accounts, and invaluable as the workhorse
for GNDStk’s JSON capabilities; but responsible, at the
time of the writing, for over 400MB – about 95% – of the
entire dependencies directory that the above command
creates.
Finally, the Makefile that the above cmake command
should have created, can be used to build GNDStk’s test
suite.
Build GNDStk’s test suite:
make

Or, if you have for instance six processor cores available,
then
Multicore build:
make -j 6

will no doubt run far faster.
GNDStk was carefully designed to not be one of those
infamous C++ libraries that triggers hours-long, even
many-minutes-long, compilations, leaving beleaguered
users wondering if they could more quickly find the data
they’re looking for by loading a file into an editor, find-
ing the data of interest, and cutting-and-pasting in their
own code. The above make in fact compiles several
codes, comprising our entire, substantial GNDStk test
suite with broad coverage across all of its considerable
capabilities. Even so, we hope and believe that you won’t
have the need to report to us that a multicore build took
more than a minute or two, at most, on a modern and
well-oiled home or office machine.
You can then invoke:
Run GNDStk’s tests:
make test

to run all of the tests. We hope that you will, at this point,
have the same pleasant experience that we do when we
invoke make test on our master GNDStk branch: a
report that 100% tests passed.

1.2.3 Summary
Here’s a summary of the commands described above,
from downloading GNDS from our repository, through
building and running its full suite of tests:

Get GNDStk
git clone https://github.com/njoy/GNDStk.
→˓git
cd GNDStk
git checkout master

Cmake; may take some time
mkdir build
cd build
cmake ..

Make and run test suite
make
...or make -j 6
make test

1.2.4 Your Own Application
Let’s outline how you can interface your own application
code with GNDStk, using CMake.
First, you should have downloaded the GNDStk repos-
itory as described above. Building and running its test
suite isn’t a prerequisite for our present purposes, but cer-
tainly wouldn’t hurt. Any problems you might encounter
in that process would no doubt show themselves again,
in some form, here.
Now assume you have some directory, call it MyApp, for
your application, with the following file structure:

MyApp/
CMakeLists.txt
dependencies/

GNDStk/
src/

app.cpp

GNDStk/ is the cloned GNDStk repository. (If you
downloaded it elsewhere and don’t want a duplicate, then
perhaps make it a symlink here , a.k.a. a shortcut, to the
cloned repo.) Next, for our simple illustration here, let
app.cpp be a single C++ source file that contains all
of your code to be used with GNDStk. The remaining
structure is typical for applications that use CMake.
A working CMakeLists.txt for the above is as follows:

cmake_minimum_required(VERSION 3.14)
project(app LANGUAGES CXX)

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED YES)

add_subdirectory(dependencies/GNDStk)

add_executable(app src/app.cpp)
target_link_libraries(app PUBLIC GNDStk)

And, the simplest possible GNDStk-aware app.cpp
would be:

#include "GNDStk.hpp"

int main()
{
}

Finally, building app should be as simple as this:

cd MyApp # <== If you're not there␣
→˓already
mkdir build
cd build
cmake ..
make

If all went well, app.cpp should have been compiled
into an executable file called app.

1.2.5 Alternative: Bash Script
An important goal for us is that GNDStk be accessible,
with as minimally intrusive a build process as possible,
to a wide variety of researchers.
If you’re using libraries other than GNDStk, they may
impose their own build systems – possibly ones you like,
possibly ones you don’t, but ones you’re stuck with, re-
gardless, for better or for worse. You may, on the other
hand, be using your preferred and well-liked build sys-
tem. Independent of what you may or may not be work-
ing with in that respect, we want GNDStk to impose as
little additional complexity as it can.
In the above spirit, and if you’re using a Linux or Linux-
based machine, you may find that the contents of the fol-
lowing simple shell script can be adapted easily to your
needs:
#!/bin/bash

Specify your base GNDStk directory (as␣
→˓cloned from github) here.
GNDSTKDIR=/path/to/your/downloaded/GNDStk

Example compilation command. -std=c++17,
→˓ and the -Is, are needed.
COMPILE="

g++
-std=c++17
-I$GNDSTKDIR/src
-I$GNDSTKDIR/build/_deps/pugixml-

→˓adapter-src/src/src
-I$GNDSTKDIR/build/_deps/json-src/

→˓include
-I$GNDSTKDIR/build/_deps/json-src/

→˓include/nlohmann
-I$GNDSTKDIR/build/_deps/log-src/src
-I$GNDSTKDIR/build/_deps/spdlog-src/

→˓include
-Wall -Wextra -Wpedantic"

pugixml.cpp is the only C++ source file,
→˓ other than your own,
that needs to be compiled. We'll␣
→˓arrange to build it *once*.
if [! -f "pugixml.o"]; then
$COMPILE \

$GNDSTKDIR/build/_deps/pugixml-adapter-
→˓src/src/src/pugixml.cpp \
-c -o pugixml.o

fi

Compile your own C++ application,␣
→˓linking with the .o from above.
$COMPILE app.cpp pugixml.o -o app

Begin, as you can see, by specifying the base GND-
Stk directory you cloned. The script immediately uses
this value to create a simple compilation command, in
this case one that uses g++ as its C++ compiler. Next,
the script checks to see if a certain .cpp file, from one
of GNDStk’s dependencies, has been compiled. If it
hasn’t been, yet, then it is now. Finally, another com-
pilation command builds your own application – illus-
trated in this simple example as a single C++ source file
called app.cpp. Consider trying this first with the min-
imal app.cpp that was shown in the section on CMake
builds.
You’re welcome to adapt our script, or its contents,
as may be necessary or helpful within your own build
regime.
Some caveats. Use of the sample bash script assumes
that you’ve downloaded GNDStk, and run cmake ..
(and in a build directory), as outlined earlier. You can
easily adjust the script if, for whatever reason, you con-
figured things in a different manner. Realize, however,
that the cmake .. in some form, or steps that created the
same effect, must have happened in order for GNDStk’s
dependencies to have been downloaded into the _deps
directory that makes several appearances throughout the
script’s compilation command.
Be aware also that the script reflects dependencies, and
their locations in directories, that are correct at the time
of this writing. While we intend to update these instruc-
tions if and when we make relevant changes to GNDStk,
it’s possible that some detective work may prove to be
necessary if we drop the documentation ball after de-
pendencies do, for whatever reason, change. If, for in-
stance, we decide to explore someday one of those deep
mysteries of the universe that regularly visits our world
through computers, such as why pugixml.cpp ended
up in src/src/ rather than just in src/, then it’s pos-
sible, even as much as we try to behave, that we’ll make
a quick change to our own make system’s actions with-
out updating these instructions for a simple script in an
entirely timely manner.

1.2.6 Header-Only Library
GNDStk, proper, is a C++ header-only library. You
can find plenty of information online if you’re unfamiliar
with the concept. In our opinion, header-only libraries
provide a multitude of advantages, such as making builds
far less complex than they’d otherwise be; and their dis-
advantages, generally distilling down to some variation
of “builds can take longer,” are straightforward to mit-
igate with careful design. We designed GNDStk care-
fully.
Our library does, however, have one dependency,
pugixml (https://pugixml.org/), that has a single C++
source (not header) file. That’s why our sample shell
script, if you read that section, needed to compile one
.cpp file, other than your own, directly.
We mention our library’s header-only nature not so as to
conclude this chapter with any particular profound point,
but largely for informational purposes. If you’re unfa-
miliar with the header-only concept, or with how to write
or to use such libraries in C++, then you might find it
helpful – or more importantly, fun – to learn more. With
respect to GNDStk, knowing that it’s formulated in this
fashion may allow you, in one way or another, to make
the best use of GNDStk in your own build system, and
in your own application.

1.3 Tutorial

1.3.1 Basics + Core Interface
Let’s begin with some very minimal GNDStk-based ex-
ample codes, explain our arrangement of major C++
namespaces, and then move on to more-interesting and
useful examples.

Minimal GNDStk-Aware Code

Here’s the most minimal GNDStk “application”, albeit
one that doesn’t do anything:

#include "GNDStk.hpp"

int main()
{
}

The takeaway: to use GNDStk, you should #include
its one primary header file, GNDStk.hpp. In contrast to
the manner in which some C++ libraries are designed,
GNDStk provides just this one main header file for user
consumption. That header, in turn, includes all of GND-
Stk’s other headers, and in the correct manner with re-
spect to namespaces and such.
Put another way, GNDStk is not designed, as some li-
braries are, so that you selectively choose what headers
to #include. When we use the C++ Standard Library,
for instance, we’ll pick and choose: include iostream,
most likely, and perhaps vector, and any number of ad-
ditional specific chosen headers.
The entire C++ Standard library is very large, of course,
and such selectivity is important so that compile times
are kept under control. GNDStk is much smaller, and
we’ve judged that compilation times aren’t significantly
impacted by putting forth our simple, easily followed
rule: just #include GNDStk.hpp – nothing more,
nothing less – in whichever of your own source files need
it.

Recommended Starting Point

For most users, most of the time, we suggest this start-
ing point:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main(/* argc,argv as necessary */)
{
}

This merely adds a specific using directive to the previ-
ous example. To understand what this directive does for
us, we need to understand GNDStk’s namespace hierar-
chy.

Namespace Hierarchy

GNDStk, like many C++ libraries, places its various
constructs into a moderate number of C++ namespaces.
For simplicity’s sake, omitting details that most users
won’t care about, consider that GNDStk’s namespace hi-
erarchy looks something like this:

// Outer namespaces that surround␣
→˓everything else.
namespace njoy {
namespace GNDStk {

// Namespace for basic, generic "GNDS␣
→˓query objects". There are
// other sets of query objects; don't␣

→˓worry about those for now.
namespace basic {

// Query objects specific for GNDS␣
→˓metadata.

namespace meta {
}

// Query objects specific for GNDS␣
→˓child nodes.

namespace child {
}

// Bring in meta:: and child::␣
→˓above.

using namespace meta;
using namespace child;

// Bring in common:: below.
using namespace common;

}

// Some query objects that we wish to␣
→˓be shared across basic::
// as well as other query-object␣

→˓namespaces that we don't list here.
namespace common {
}

// Logging capabilities, including,␣
→˓for example, support for errors,
// warnings, and informational␣

→˓messages.
namespace log {
}

// Our "core" namespace; see␣
→˓discussion.
namespace core {
// Bring in GNDStk:: itself, and␣

→˓basic:: above
using namespace GNDStk;
using namespace basic;

}

}
}

A few things are happening here, so bear with us.
For starters, everything is in njoy::GNDStk::. That’s
easy enough to understand. Notably, however: con-
sidering that a typical C++ library will often begin, at
global scope, with a namespace that matches the li-
brary’s name, it’s laughably easy to forget the njoy::
part. We’ve made that mistake several times, ourselves.
We have the njoy:: only because GNDStk is just one
element of Los Alamos National Laboratory’s broader
NJOY suite of software projects. If – well, when – you
ever forget the njoy::, a modern C++ compiler may
suggest, in its initial error message (before its flood of
spurious ones), that you probably meant the GNDStk::
in njoy::.
Fundamentally important in GNDStk are its “query ob-
jects”. Think of these as small modules of informa-
tion that facilitate a concise notation for getting (or set-
ting) GNDS data. (Much more on all of this later.) For
now, suffice it to say that the query objects of most in-
terest to users are our basic ones in – drum roll, please
– basic::. Within basic::, query objects are further
placed into meta:: or child::, depending on whether
they’re designed for getting and setting metadata, or for
getting and setting child nodes. Names for our query ob-
jects equate, except in certain rare cases, to the GNDS
names of the metadata and child nodes with which they
interact. For example, a GNDS label metadatum is
called label in GNDStk’s query objects, and a GNDS
styles node is called styles.
Strangely – at first glance – basic:: has using
directives for its own meta:: and child:: sub-
namespaces! Why not place the contents of those di-
rectly into basic:: to begin with, and dispense with
the sub-namespaces altogether? It turns out, in fact, that
the GNDS standard has a small amount of overlap be-
tween its names for metadata, and its names for nodes.
Two examples are parity and spin. If, for example,
you look through the currently available XML-format
GNDS files, you’ll see XML spin="something"meta-
data, and also XML <spin> elements. Our arrangement
for basic::, meta:: and child:: is such that if you’re
using namespace basic, you can dispense with a
meta:: or child:: prefix where names are unique
(styles, label, and most other names), or prefix ap-
propriately in the occasional cases where they aren’t:
meta::spin for spin metadata, child::spin for spin
nodes, and so forth.
basic:: is one of two namespaces (at the time of this
writing) into which we’ve placed full sets of query ob-
jects for GNDS metadata and child nodes. (Don’t worry,
for now, about the other set. We may even remove it, as
other capabilities of GNDStk have made it less worth-
while to have than it once was.) A third namespace,
common::, contains a small handful (not a complete set)
of query objects that are intended for use with both of
the two full sets. In addition to using its own meta::
and child:: sub-namespaces for the reasons we de-
scribed above, basic:: also brings in the contents of
common::, so that no common:: prefix is needed when
you’re using namespace basic.
A namespace log:: also exists in GNDStk. We’ll dis-
cuss it elsewhere, but mention it here only because (1)
you may occasionally find its contents to be useful for
your own purposes; and (2) it serves, in contrast to the
other namespaces being discussed here, as an example
of something that isn’t included automatically by our
core:: namespace. We don’t consider it to be useful
enough, for the average user, to justify cluttering core::
with its contents. If and when you need it, log:: is
short, and easy to type.

Core Interface

That brings us, finally, to the core:: namespace that we
called out, in our example code, as being precisely what
we suggest that most users bring in:

using namespace njoy::GNDStk::core;

core:: is little more than this:
namespace core {
using namespace GNDStk;
using namespace basic;

}

So, core:: brings in basic::, which as we saw
above brings in its own meta:: and child:: sub-
namespaces, as well as the (modest but useful) content
in common::. On top of that, core:: actually brings
in GNDStk:: (that is, njoy::GNDStk::), even though
core:: itself in inside of njoy::GNDStk::! (The lan-
guage does allow that.)
All things considered, then, the single directive using
namespace njoy::GNDStk::core brings in all con-
tent from:
njoy::GNDStk::
njoy::GNDStk::basic::
njoy::GNDStk::basic::meta::
njoy::GNDStk::basic::child::
njoy::GNDStk::common::

with the single caveat we spoke of already in regards
to basic:: – that in the rare but occasional cases of
overlap (meta::spin vs. child::spin, for instance,
or meta::parity vs. child::parity), you must dis-
ambiguate. And the compiler will tell you as much, as
it’ll be an error until you do.
The combined content of the above-listed namespaces
constitute what we consider to be a good set of core
GNDStk capabilities. Hence, our motivation for creat-
ing a core:: namespace that brings all of them into
your code, together, via the one convenient directive that
we’ve recommended.
You can consider the phrases core namespace and core
interface to be essentially interchangeable. Which term
we use, and where, depends on whether we’re referring
to the namespace in particular, or to the functionality it
exposes.
We’ll note, finally, that having (and recommending) our
core:: namespace is helpful from the standpoint of
software maintainability. If we decide at some future
time that GNDStk needs a refactor, and/or a rearrange-
ment of its functionality into a different overarching
namespace scheme, we anticipate being able to update
the contents of core:: in such a way that the codes
that use it – like, we hope, yours – will need few if any
changes, even if the GNDStk constructs that the codes
employ have been moved to entirely new or different lo-
cations.

1.3.2 Read and Write GNDS
Read XML

Here’s a simple code that reads the XML format GNDS
file named n-094_Pu_239.xml:
#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239("n-094_Pu_239.xml");
}

Obviously, but worth a reminder, this assumes that the
file resides right there, in the directory from which this
code is run. If it doesn’t, include a suitable absolute or
relative path in the file name string. We, and no doubt
everyone reading this, have probably made this mistake
often enough over the years.
Tree is GNDStk’s data structure for holding an entire
GNDS hierarchy, a.k.a. GNDS tree. GNDS is, indeed, a
tree-like structure, and that’s reflected in the name of our
C++ class. Once loaded, you’ll be able to do great things
– most likely, in this particular example, data queries
from an existing GNDS file – with object, pu239 here,
into which the GNDS data in the loaded file were placed.
A large collection of XML-format GNDS files can be
downloaded from here:

https://www.nndc.bnl.gov/endf/b8.0/
gndsfiles.html

That’s where we got our example’s n-094_Pu_239.
xml, and many other GNDS files. At around 24MB in
size, it’s one of the larger GNDS files from the above site,
but it isn’t among the absolute largest. We’ll often use it
in our examples; its modest size (by today’s standards)
should still allow for fast reading, and we believe that its
contents make for good examples. The same, of course,
could probably be said about any GNDS file, depending
on what data are of interest.
While we didn’t say so directly, a C++ programmer will
have realized what the above code tells us: that Tree
has a constructor from a character string (in fact, from a
std::string), and for which the behavior is: “interpret
the string as the name of a GNDS file, and load the file.”
You could write this instead:
#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239;
pu239.read("n-094_Pu_239.xml");

}

which is more explicit in its purpose, but slightly less
concise. (And the earlier, direct-constructed Tree could
be const, if that matters.)

Files, Streams, Types

In terms of what we saw above, Tree has four simi-
lar constructors. (And has several additional completely
different constructors that are outside the scope of the
present discussion).
The first argument is either a file name, or a C++
std::istream from which to read the “file.” The sec-
ond argument allows you to stipulate the file format ex-
plicitly, and can either be something from GNDStk’s
FileType enumerator:

enum class FileType {
null, // Default, automagick, etc.
tree, // <== DON't use this for␣

→˓reading; just writing
// Generally use one of these:
xml, XML = xml,
json, JSON = json,
hdf5, HDF5 = hdf5

};

or can be a direct string: "xml", etc. A direct string
is shorter and slightly easier to type – but, if mistyped,
would lead to a run-time error, not a compile-time error,
if that matters to you in this simple context.
HDF5 is not supported at this time! Just XML and
JSON.
You should seldom, if ever, need to provide the second
argument. Absent the second argument, GNDStk de-
termines the file type automatically, and we doubt that
you’ll have any objections to that. If you do choose pro-
vide the second argument, then it, not GNDStk’s auto-
matic file type determination, will be used, but you’ll see
a warning if your directly-given value contradicts GND-
Stk’s automatic determination, which it still performs for
diagnostic purposes. Of course, if you try to force read-
ing in one format, and the file’s actual format is some-
thing else, you’ll soon be seeing a flood of errors, not
mere warnings, as we attempt to read the file pursuant to
the (incorrect) forced format.
GNDStk uses the “file magic number,” not the file name,
to determine file type automatically. The file magic
number really means the first byte, or bytes, of the file.
XML files always begin with a < character. HDF files
(not supported yet) begin with ASCII 137 and a few
other specific bytes. If the first byte is neither of those
values, then GNDStk assumes JSON format.
A nice thing about using the file magic number, not the
file name, is that it works for std::istream, for which
a “file name” isn’t even available. Moreover, it tells us
what’s actually in the file or the stream, independent of
what any name might imply. If you provide an XML file
but call it something.JSON, then that would be a rather
strange thing to do, but GNDStk will correctly determine
the actual type – XML – and thus read the file correctly.
In cases like that, GNDStk will do an additional good
deed: it’ll warn you that the file’s name contradicts the
file’s type as implied by the file magic number.

Read & Write XML

Here’s a simple example in which we read our trusty ex-
ample GNDS XML file, then write it back out to another
XML file:
#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239;
pu239.read("n-094_Pu_239.xml");
indent = 2; // <== not necessary; just␣

→˓for illustration
pu239.write("pu239");

}

You probably already guessed, correctly, that if Tree
has a read that reads, then it probably has a write that
writes. We’ve endeavored to make GNDStk’s design as
intuitive and consistent as reasonably possible.
We wrote earlier that GNDStk uses the file magic num-
ber, not the file name, to determine the file type when
reading. When writing, there is no file magic number –
the file to be written doesn’t exist, yet, or if it does, then
its present contents are meaningless because the file is
about to be replaced.
When you call write, therefore, GNDStk does use the
file name to determine what format in which to write,
except that you can provide that second argument again
– a value from our FileType enumerator, or a string like
"xml" or "json" – to specify the type you want directly.
As it does for read, GNDStk makes some consistency
checks. If you write, for instance,

pu239.write("pu239.xml", "json");

then GNDStk will write file pu239.xml in JSON for-
mat, as you asked for in the second argument, but will
warn that the file extension is inconsistent with the for-
mat you asked for.
What if the file name extension isn’t given, or isn’t rec-
ognized, and a format isn’t forced with a second argu-
ment? That is, what if we wrote, for example, pu239.
write("pu239")? In that case, write writes the Tree
into a simple output format that we created largely for de-
bugging purposes. You probably won’t have much use
for this format, and we don’t provide the ability to read
from it, but you’ll no doubt notice the problem quickly
and be able to fix it.
In the above code, what’s indent all about? We didn’t
really need to clutter the example by including it, as it
isn’t required at all, but we wanted to illustrate some-
thing minor but perhaps of interest. indent is one of
a small handful of useful “global variables” (not truly
global, but in namespace njoy::GNDStk::) that GND-
Stk provides to you for fun and profit. Fun, at least.
For XML and JSON output files, as well as for a few
other things throughout GNDStk’s vast array of features,
indent tells how many spaces you’d like indentation to
be. GNDStk’s default is 3 spaces, which this author hap-
pens to prefer. In the example, we’re saying (before the
write, of course) that we’d like 2 spaces to be used.
At present, behavior is undefined if you give a nega-
tive number, and of course the output will look ridicu-
lous if you give a huge number. Most people prefer 2-5
spaces for indentation. In case you’re wondering, GND-
Stk has no facility for using tabs – an evil creation, quite
arguably – for this purpose.
Finally, we note that write can write to a
std::ostream, not just a file, in much the same
way that read can read from a std::istream, not
just a file. (Always remember: ostream for writes,
istream for reads.) Bear in mind, again, that with
output a file magic number isn’t available, and if you
use std::ostream, then a file name, from which we
might guess the format, isn’t available either. So, you’ll
specifically want to give the second argument – "xml",
say, or "json" – if you write to a std::ostream.

More Reads & Writes

We hope that GNDStk’s basic facilities for reading and
writing GNDS files are clear enough at this point, but
we’ll provide a few more examples nonetheless. A sim-
ple XML to JSON conversion can be done like this:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239;
pu239.read("n-094_Pu_239.xml");
pu239.write("n-094_Pu_239.json");

}

Here’s a more compact version of the same thing:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree("n-094_Pu_239.xml").write("n-094_
→˓Pu_239.json");
}

Just as we can write JSON, we can read it, too. If we’ve
produced the output .json file as with the above exam-
ple, we can read it thus:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239("n-094_Pu_239.json");
}

Here, as you can see , we’ve returned to using a “read by
constructor,” as in our original XML example, instead
of employing a read call. It’s just more concise, in our
opinion. Of course, you’ll use – and should – whichever
variation you prefer.

Read, Write, Compare

We’ll wrap up our set of read/write examples with a code
that reads our favorite GNDS XML file, writes it to a
JSON file, independently reads the JSON back into an-
other Tree object, and then also compares the new Tree
to the original:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{
// Read from XML
Tree FromXML;
FromXML.read("n-094_Pu_239.xml");

// Write to JSON
FromXML.write("test.json");

// Read back from JSON
Tree FromJSON;
FromJSON.read("test.json");

// Compare
assert(FromXML == FromJSON);

}

Several remarks are in order here.
The comparison operator for Tree compares the two
GNDS trees in an order-agnostic manner. GNDS funda-
mentally provides data in two places: nodes (think XML
“elements”) in its overall tree structure, and metadata
(think XML “attributes”). The GNDS standard does
not, however, consider ordering to be important. One
tree node’s child nodes or metadata, anywhere or every-
where throughout the entire tree structure, could be re-
ordered arbitrarily, but if each remains equivalent – in
the same respect that we consider two mathematical sets
to be equivalent – then the two GNDS trees are to be
considered equivalent. So it is with our Tree compari-
son.
Interestingly enough, the above example’s FromXML and
FromJSON objects will, in fact, have quite different or-
derings, across the board, of child nodes and metadata!
Why is this the case? GNDStk makes use of an exter-
nal library called pugixml for reading and writing XML
files, and an external library nlohmann/json, on Github,
for reading and writing JSON files:

https://pugixml.org/
https://github.com/nlohmann/json

It turns out that pugixml preserves the existing order-
ing of XML elements and attributes when it reads a file,
while nlohmann/json lexicographically sorts the JSON
name/value pairs by name. The latter library’s behav-
ior could be considered unfortunate if we’d rather see
ordering preserved; while the former library’s behavior
could be considered unfortunate if we wish to fully re-
spect GNDS’ “no-ordering” rule and discourage the cre-
ation of code that might inadvertently depend on data or-
dering. In any event, our operator== for Tree respects
order-independent equivalence, as it should.
What’s assert about? If you’re not familiar with
assert, it’s actually a longstanding and quite useful
macro that C++ inherited from the C language. assert
simply checks that its argument is true, and causes the
code to exit immediately, with an error message that says
something along the lines of “assertion failure . . . ”, if it
isn’t true.
This documentation uses assert throughout its exam-
ples. It’s great for that purpose: an expression like
assert(foo) can be read, simply and concisely, as:
“we’re asserting to you, the reader, that foo is true here.”
In the above code, for instance, we’re telling you di-
rectly that FromXML and FromJSON equal each other
when we’re at the assert line.
GNDStk’s test suite, by the way, makes use of the
CATCH library, described online as a “test framework
for unit-tests.” CATCH, on the one hand, has far more
macros and other testing machinery than we get with just
assert by itself. However, a philosophy we’re keeping
in mind with GNDStk is that we don’t want to require
potential users to learn more than they need to. A sys-
tem like CATCH, while more powerful, can obscure, to
the uninitiated user, where even a basic construct like a
main() is located, or how different source files are fitted
together to create a group of tests.
Therefore, for your benefit throughout this manual,
we’ll keep things simple. We’ll provide complete,
working, compile-able codes except where it’s obvious
that something is just a code fragment; and employ the
simple but clear assert where we wish to draw atten-
tion to the fact that the asserted expression is true.

Regarding JSON Files

The specifications for Version 1.9 of the GNDS standard
can be found here:

https://www.oecd-nea.org/jcms/pl_39689/
specifications-for-the-generalised-nuclear-database-structure-gnds

which, at the time of this writing, is the latest available
standard. Section 2.4 of the downloadable PDF doc-
ument discusses limitations of some “meta-languages”
(roughly speaking, file formats) such as JSON, in com-
parison with what XML is able to represent.
Here are three points quoted directly from the docu-
ment:

1. for meta-languages that do not support
attributes, either group all attributes
together under a child node called
attributes or convert each attribute
to a child node and add a suffix like _attr
to the node name.
2. for meta-languages that do not support
multiple child nodes with the same name,
add a unique suffix to each node name. For
example, if multiple reaction elements
appear in the file, they become reaction0,
reaction1, etc. To avoid parsing strings
to determine the original node name, a
nodeName attribute (or child node) should
also be added indicating the original un-
modified node name.
3. for meta-languages that do not preserve
the order of child elements, an attribute or
child node with the (0-based) index should
be added to the node. For example, in
HDF5 the attribute nodeIndex could be
added to each child in a group.

For (1), GNDStk does the first suggested action: it
groups all of a node’s attributes under a child node called
attributes. We consider that to be cleaner than using
an _attr suffix.
For (2), GNDStk does exactly as illustrated: multiple el-
ements of the same name are suffixed with 0, 1, etc. And,
then, a JSON name/value pair with the name nodeName,
as suggested, is created in order to preserve the original
unsuffixed element’s name.
For (3), GNDStk does nothing in particular right now.
Our understanding of GNDS is that it’s designed so
that elements – nodes – can appear in any order.
Here’s a small XML fragment taken directly from the
n-094_Pu_239.xml example GNDS file that we’ve
been using for our examples:

<axes>
<axis index="1" label="energy_in" unit=

→˓"eV"/>
<axis index="0" label="radius" unit="fm

→˓"/>
</axes>

Those axis child nodes already contain a 0-based
index attribute, so perhaps the specification’s admon-
ishment #3 is something we can consider to have been
satisfied already by whomever has created an existing,
valid GNDS file (so that no further treatment is re-
quired); or something that we must satisfy if we are to
create our own valid GNDS files.
The GNDS document then puts forth the following ex-
ample XML fragment – slightly reformatted here for
clarity, and with a proper XML declaration node (the
first line) added for completeness:

<?xml version="1.0" encoding="UTF-8"?>
<employees>
<employee>
<name first="Doc" last="Jones"/>

</employee>
<employee>
<name first="Grumpy" last="Smith"/>

</employee>
<employee>
<name first="Happy" last="Earp"/>

</employee>
</employees>

A viable JSON equivalent is then suggested.
Calling the above XML file employees.xml, let’s bring
forth our tried-and-true GNDStk methodology for con-
verting from XML to JSON:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree("employees.xml").write("employees.
→˓json");
}

and see what happens. Here’s exactly the output JSON
file that the above code, applied to the sample XML, cre-
ates:
{
"employees": {
"employee0": {
"name": {
"attributes": {
"first": "Doc",
"last": "Jones"

}
},
"nodeName": "employee"

},
"employee1": {
"name": {
"attributes": {
"first": "Grumpy",
"last": "Smith"

}
},
"nodeName": "employee"

},
"employee2": {
"name": {
"attributes": {
"first": "Happy",
"last": "Earp"

}
},
"nodeName": "employee"

}
}

}

This illustrates how GNDStk creates JSON files, consis-
tent with the suggestions in the GNDS specification.
If you try the above code, on the given input, you’ll see
that GNDStk prints two warnings. The same warning
twice, actually: once during input, and once during out-
put. The warning tells us that <employees> – the top-
level node of the above XML document – is not recog-
nized as a valid GNDS top-level node. (Valid GNDS
top-level nodes, per the standard, are reactionSuite,
covarianceSuite, PoPs, thermalScattering, and
fissionFragmentData.) It’s just a warning, not an er-
ror, so don’t worry about it for now.
Naturally, GNDStk reverses the modifications when
we read from a JSON file into our internal format.
Specifically: values in an attributes block are trans-
formed into metadata in the enclosing node, and values
from nodeName name/value pairs replace index-suffixed
names.
At this time, GNDStk provides no other options, such as
the _attr suffix that the GNDS specification suggested
as a possibility, for handling JSON. Neither can it read
JSONs that may have been created in a different man-
ner. We’re not aware, at the time of this writing, of the
existence any official JSON-format GNDS files. If and
when such files come into existence, and if such files use
a different scheme than we do for addressing the issues
described above, then we’ll provide capabilities at least
for reading those files, and perhaps for writing them in
that manner as well.

1.3.3 Data Structure “Direct”
In this section, we’ll talk about some of the basic in-
ternal constructs of some of GNDStk’s classes: more
importantly, Tree and Node; less importantly, XML and
JSON. We’ll describe member data – with an important
message to users first – and also some of the member
functions that you’re likely to find useful. For now, here,
we won’t cover the plethora of member functions that
support our “smart query system.” Those need their own
dedicated, and detailed, discussion.

About Direct Access

Right away, we strongly suggest that most users avoid
direct access of member data in these classes! An
exception is the name string in Tree and Node, which
you might well wish to access. It’s rather inoculous.
Other member data, at this time, consists of containers
for metadata and child nodes.
In most cases, we hope you’ll prefer to use GNDStk’s
rich variety of powerful higher-level capabilities, in our
“smart query system,” for pulling data from, or pushing
data to, the metadata and child-node containers. (We’re
talking right now about capabilities that are still in our
core interface – not in our “high-level” interface that pro-
vides classes tailored to specific versions of the GNDS
standard.) The basics of our “smart query system” are
described in an upcoming section of this document.
Our query system was designed precisely so that you’ll
have something much more concise and powerful than
you will by directly accessing the containers in question.
And, most likely, also safer to use, insofar as working
directly with the internals of data structures, especially
those that were designed by other people, invariably runs
some risks. C++ containers aren’t rocket science (and,
besides, some GNDStk users may well be rocket scien-
tists), so we do in fact provide public access to these
structures, in the interest of supporting users who are
comfortable and capable with the C++ language.
Finally, we believe that if you understand the basic in-
ternal data format, then you may find the behavior of the
higher-level capabilities, and our motivation for creating
them, to be more clear.

Tree vs. Node

We’ve already seen Tree in some examples. It’s the
class to use when you want to read or write an entire
GNDS tree. Tree is derived from another important
class: Node. At the time of this writing, Tree contains
no additional data beyond what it gets from Node. It
does, however, contain some additional member func-
tions, and it makes some slight changes to some of the
member functions that otherwise gets from its Node
base.
Here’s a short sketch of our arrangement:

class Node
{
using metaPair = std::pair<std::string,

→˓std::string>;
using childPtr = std::unique_ptr<Node>;

public:
std::string name;
std::vector<metaPair> metadata;
std::vector<childPtr> children;
// constructors, member functions, ...

};

class Tree : public Node
{
// a few additional and/or different␣

→˓member functions
};

The GNDS standard is essentially a tree structure, and
this is reflected in our classes, with Tree being intended
for the top-level (root) node, and Node for all others.
Some readers may realize, correctly, that a typical tree
structure’s top-level node could be treated in exactly the
same way as all of its other nodes. One doesn’t generally
need different data types for a tree’s root node and its
other nodes, including leaves. Roughly speaking, tree
nodes all “look the same,” with similar contents as well
as relationships to their child nodes.
That’s all true, and it could be described as the theoreti-
cal/mathematical view of tree structures. From a practi-
cal/engineering standpoint, some utility can sometimes
be had in treating a top-level node differently from the
others. That’s the reasoning for Tree versus Node.
As a derived class, Tree automatically inherits most of
its functionality from Node, as we want it to. In a handful
of respects, however, Tree will reflect the fact that it’s
there to represent an entire GNDS hierarchy, not just a
portion thereof. For example, it tries to ensure that the
top-level GNDS node isn’t any valid GNDS node, but
one of the few that’s valid as a top-level GNDS node.
(GNDStk, it turns out, emits a warning, but not an error,
if you try to write a Tree that doesn’t have a top-level
GNDS node with a valid name.)
One could also imagine extra functionality that a Tree,
but not a Node, could be equipped with. In the typical
case that a GNDS tree is read from a file, for example, we
could have the Tree structure store the file name. Then,
perhaps, we could equip Tree with a member function
like overwrite() or rewrite() that would replace
the original file (say, after a user has made changes that
they wished to make to the GNDS data) without requir-
ing that the file name be repeated. (Analogy: a image-
editing GUI that provides, in its File menu, an item like
Overwrite <original.jpg>, in addition to a Save
As... and an Export.) GNDStk does not, at the time of
this writing, provide this particular capability. By mak-
ing Tree different from Node, however, we allow for the
possibility of such things being added, painlessly, at a
later time.

Content Preservation

An important initial design decision that we made for our
Tree and Node classes is that they faithfully represent
precisely the content from any GNDS file we may read
into them. The fundamental motivation here is simple:
data evaluators work hard to create good data, and we
don’t want to take any actions that might, in any way,
change or lose anything.
Consider, as a simple example, this small fragment
of content from near the beginning of our favorite
n-094_Pu_239.xml example GNDS file:

<mass>
<double label="eval" value="1.

→˓00866491574" unit="amu"/>
</mass>

We could probably all agree that the label "eval" and
unit "amu" should be stored as strings. But what about
the value "1.00866491574"? We could store it as a
double, if we’re presumptuous enough to assume that
a user intends to use it as a double – not a float,
say, or a long double. We’d also be assuming, there,
that a user doesn’t mind the expensive of presumptively
“floating-point” content from GNDS files being con-
verted en masse from the original XML character strings
to floating-points, regardless of which GNDS content
the user might actually access. On top of that, we’d
be glossing over the various complexities that can (and
do) arise when decimal representations of floating-point
numbers are converted to internal binary floating-points,
and back again. (The “back again” part is especially rel-
evant if someone plans, say, to read a GNDS file, add
new data and/or fix old data in selected areas, and then
write the entire GNDS file back out again.)
Instead of making wild assumptions, we’ll opt instead to
preserve original content – that is, to respect precisely
what exists in a GNDS file to begin with.
To this end, all individual data, regardless of what they
may appear to be (string, floating-point, integer, sin-
gle character, etc.), are stored as strings. More pre-
cisely, as C++ std::strings. Node names ("mass")
are stored as strings. Metadata key/value pairs are
stored as C++ std::pairs of strings; think {"label",
"eval"}. Even the content in GNDS values nodes,
like this one (the first in n-094_Pu_239.xml):

<values>
2500 8.9172 2550 8.9155 2650 8.9139 ...
... 28500 8.4901 29500 8.4741 3e4 8.4659

</values>

are stored, in a Node, as long strings. (We
could reasonably split out such thing into
std::vector<std::string>s, too, but decided
to not even do that. To perform such a split everywhere,
automatically, would take time, and a user might not
even intend to access any specific portion of GNDS
data.)
No worries, though: our core interface, and especially
the smart query system that we’ve spoken of, has plenty
of functionality for serving its internal strings to you
as floating-points, for instance; or for re-forming long
strings, like the ones just described, into vectors of
strings, or vectors of floating-points, or vectors of just
about anything you may wish to create. When we speak
of content preservation, then, we’re saying that an input
text file – XML or JSON, for now – is factored into its
underlying tree structure, but with its individual mean-
ingful parts (neglecting, as usual, whitespace) still stored
as text, with no modifications.
A given user’s application code will almost certainly
have its own internal classes that contain GNDS data,
or data computed from GNDS data, in ways that work
well for the user’s application. Someone may also have
classes specifically intended to mirror the content in var-
ious GNDS nodes, just in a different way. (GNDStk’s
own “high-level interface” will provide precisely such
classes.) Such classes can certainly make assumptions
we didn’t want GNDStk to make – like, for example,
that we do want double for that numerical value above.
Or, for that matter, that perhaps the unit, "amu" above
should be an entry in some C++ enumerator for allow-
able units – no longer a string at all. We’re happy to re-
port that our core interface, and in particular our smart
query system, is designed to help you interact well, and
easily, with GNDStk’s internal string storage.
We’ll write more about the above considerations else-
where. For now, let’s return to the main point of this
chapter, and describe GNDStk’s two major classes that
store GNDS data.

Node

We’ll write first about Node (for general nodes), because
Tree (for the root node only) derives from Node. Recall
that the member data in Node looks like this:
class Node
{
using metaPair = std::pair<std::string,

→˓std::string>;
using childPtr = std::unique_ptr<Node>;

public:
std::string name;
std::vector<metaPair> metadata;
std::vector<childPtr> children;
// constructors, member functions, ...

};

In short, inlining the metaPair and childPtr types and
omitting the std:: prefix for brevity:

// Node's data members
string name;
vector< pair<string,string> > metadata;
vector< unique_ptr<Node> > children;

The above evinces a simple tree structure that’s entirely
sufficient for representing the contents of any GNDS
node.
Let’s provide a short but concrete example. Here’s some
XML content from near the top of the n-094_Pu_239.
xml GNDS file:
<evaluated label="eval" date="2017-12-01"␣
→˓library="ENDF/B" version="8.0.5">
<temperature value="0.0" unit="K"/>
<projectileEnergyDomain min="1e-05" max=

→˓"20000000.0" unit="eV"/>
</evaluated>

Here, an outer evaluated node (XML “element”)
contains four metadata key/value pairs (XML “at-
tributes”) and two child elements. The first child ele-
ment, temperature, contains two metadata pairs but
no further child nodes. The second child element,
projectileEnergyDomain, contains three metadata
pairs but no further child nodes.
At the risk of continuing a narrative of statements that
are no doubt obvious, here’s precisely how the above
evaluated node is represented in a Node:

name: "evaluated"

metadata[0]: {"label", "eval"}
metadata[1]: {"date", "2017-12-01"}
metadata[2]: {"library", "ENDF/B"}
metadata[3]: {"version", "8.0.5"}

children[0]: pointer to another Node,␣
→˓with:

name: "temperature"

metadata[0]: {"value", "0.0"}
metadata[1]: {"unit", "K"}

children[1]: pointer to another Node,␣
→˓with:

name: "projectileEnergyDomain"

metadata[0]: {"min", "1e-05"}
metadata[1]: {"max", "20000000.0"}
metadata[2]: {"unit", "eV"}

Here, {"foo", "bar"} is a C++
std::pair<std::string,std::string>, and
is thus accessible in the customary manner: .first for
the "foo" and .second for the "bar".
We use C++ std::unique_ptr<Node>s for the point-
ers to child nodes.

Pointers about Pointers

A couple of early users asked us about the motivation for
using pointers, so we’ll briefly address, here, the con-
cerns that they raised, in case other users wonder the
same things.
One person wondered why children is a vector of
pointers – not a vector of Nodes, which would appear at
least to be simpler. Of course, a Node can’t directly con-
tain another Node – C++ wouldn’t allow it – but could in-
deed contain a vector of Nodes. (C++ vectors them-
selves involve pointers, so pointers are still involved,
they’re just not explicit.)
Without delving into a discussion that’s well beyond the
scope of this document, we’ll say only that implementing
a Node’s children as a vector of Nodes would likely
wreak havoc on efficiency, both in space (memory) and
in time, when objects like Tree and Node are being read
from a file or otherwise created or modified. Consider-
able memory fragmentation could also come about.
Another user wanted to write code that copied some of
children's pointers. The attempt to do so was stymied
due to std::unique_ptr's intentional lack of a copy
constructor, as unique_ptr is designed to be the exclu-
sive “owner” of the object to which it points. GNDStk
uses unique_ptr quite intentionally, precisely to deal
with the ownership issue cleanly and clearly while also
benefitting from unique_ptr's automatic handling of
an object’s memory footprint.
A code shouldn’t attempt to take any actions that would
break the ownership rules unique_ptr manifests, and
a C++ compiler will say so loudly if one tries. Anyone
who really wishes to make their own pointer – say, a raw
pointer – to an object to which one of our unique_ptrs
already refers, can always dereference the unique_ptr
(giving a reference to a const or non-const Node, and
effectively losing the unique_ptr aspect), then take
the address to get a pointer again: basically &(*uptr),
where uptr is a unique_ptr in one of our children
vectors. (Do not, of course, delete the Node through
such a pointer; leave its management to the original
unique_ptr!) We recommend that anyone who does
this, or anything similar, be sufficiently familiar with the
C++ language, as well as justifiably confident that there
isn’t a better way to accomplish the goal at hand.

Tree

Tree derives from Node, so what we’ve already spoken
about, in terms of member data, still applies. Some ad-
ditional points are in order, however, owing to Tree's
status as the root node in our internal representation of a
GNDS hierarchy.

Direct-Access Examples

XML and JSON

1.3.4 Smart Query System
1.3.5 GNDS Creation
node ctors tree ctors add()s

1.3.6 Advanced Examples
Largely continue query system discussion. Not sure
about “advanced examples” characterization.

CHAPTER

TWO

BASIC CONSTRUCTS

2.1 Primary Classes

2.1.1 Tree
2.1.2 Node
2.1.3 XML
2.1.4 JSON

2.2 Node: Major Capabilities

2.2.1 Query
2.2.2 Add Data

2.3 Functions

2.3.1 foo
2.3.2 bar
2.3.3 etc

2.4 Reading & Writing

2.5 Miscellaneous Utilities

2.5.1 Global Flags
2.5.2 Diagnostics
Notes

Warnings

Errors

Context

2.5.3 Other

CHAPTER

THREE

CORE INTERFACE

3.1 Motivation

3.2 Query System, Part 1

3.2.1 Meta & Child
Meta Class

Child Class

3.2.2 Operators
3.2.3 Query Metadata
Node.meta(string)

1 const string &meta (const string &key)␣
→˓const;

2 string &meta (const string &key);

Node.meta(Meta)

1 const string &meta (const Meta< ␣
→˓ void > &kwd) const;

2 string &meta (const Meta< ␣
→˓ void > &kwd);

3 TYPE meta (const Meta< ␣
→˓ TYPE, CONVERTER> &kwd) const;

4 optional <TYPE> meta (const Meta
→˓<optional <TYPE>, CONVERTER> &kwd)␣
→˓const;

5 Defaulted<TYPE> meta (const Meta
→˓<Defaulted<TYPE>, CONVERTER> &kwd)␣
→˓const;

6 TYPE meta (const Meta
→˓<variant <Ts...>,CONVERTER> &kwd)␣
→˓const;

Node(Meta)

1 decltype(auto) operator()(const Meta
→˓<TYPE,CONVERTER> &kwd) const;

2 decltype(auto) operator()(const Meta
→˓<TYPE,CONVERTER> &kwd);

3.2.4 Query Child Nodes
Node.one(string)

1 const Node &one(const string &key, const␣
→˓FILTER &filter) const;

2 Node &one(const string &key, const␣
→˓FILTER &filter);

3 const Node &one(const string &key ␣
→˓) const;

4 Node &one(const string &key ␣
→˓);

Node.many(string)

1 CONTAINER<Node> many(const string &key,␣
→˓const FILTER &filter) const;

2 CONTAINER<Node> many(const string &key ␣
→˓) const;

Node.child(Child)

1 const Node &child(const Child<void, ␣
→˓ one, void, FILTER> &
→˓kwd) const;

2 Node &child(const Child<void, ␣
→˓ one, void, FILTER> &
→˓kwd);

3 CONTAINER<Node> child(const Child<void, ␣
→˓ many, void, FILTER> &
→˓kwd) const;

4 TYPE child(const Child<TYPE, ␣
→˓ one, CONVERTER, FILTER> &
→˓kwd) const;

5 optional<TYPE> child(const Child
→˓<optional <TYPE>, one, CONVERTER,␣
→˓FILTER> &kwd) const;

6 Defaulted<TYPE> child(const Child
→˓<Defaulted<TYPE>, one, CONVERTER,␣
→˓FILTER> &kwd) const;

7 TYPE child(const Child
→˓<variant <Ts...>, one, CONVERTER,␣
→˓FILTER> &kwd) const;

8 CONTAINER<TYPE> child(const Child<TYPE, ␣
→˓ many, CONVERTER, FILTER> &
→˓kwd) const;

9 CONTAINER<TYPE> child(const Child
→˓<optional <TYPE>, many, CONVERTER,␣
→˓FILTER> &kwd) const;

10 CONTAINER<TYPE> child(const Child
→˓<Defaulted<TYPE>, many, CONVERTER,␣
→˓FILTER> &kwd) const;

11 CONTAINER<TYPE> child(const Child
→˓<variant <Ts...>, many, CONVERTER,␣
→˓FILTER> &kwd) const;

Node(Child)

1 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd ␣
→˓) const;

2 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd ␣
→˓);

3 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const string label) const;

4 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const string label);

5 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const regex labelRegex) const;

6 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const regex labelRegex);

3.3 Query System, Part 2

3.3.1 Sequence Queries
Node.operator(. . .)

1 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd, ␣
→˓ KEYWORDS &&...kwds␣
→˓) const;

2 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd, ␣
→˓ KEYWORDS &&...kwds␣
→˓);

3 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const string label, KEYWORDS &&...
→˓kwds) const;

4 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const string label, KEYWORDS &&...
→˓kwds);

5 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const char *const label, KEYWORDS &&...
→˓kwds) const;

6 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const char *const label, KEYWORDS &&...
→˓kwds);

7 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const regex labelRegex, KEYWORDS &&...
→˓kwds) const;

8 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const regex labelRegex, KEYWORDS &&...
→˓kwds);

9 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const pair<Child,label>, KEYWORDS &&...
→˓kwds) const;

10 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,␣
→˓const pair<Child,label>, KEYWORDS &&...
→˓kwds);

3.3.2 Multi-Queries
Node.operator(|)

1 auto operator()(const KeywordTup<Ks...> &
→˓kwds) const;

2 auto operator()(const KeywordTup<Ks...> &
→˓kwds);

3.3.3 Conversion & Filters

3.4 Creating Data

3.4.1 Direct
3.4.2 Using “Query” Objects
Metadata

Need a legend for things like this. . . .

1 // string, value
2 metaPair &add(const string &key, const ␣

→˓ T &val, const CONVERTER &
→˓converter = CONVERTER{});

3 metaPair &add(const string &key, const␣
→˓Defaulted<T> &def, const CONVERTER &
→˓converter = CONVERTER{});

4

5 // Meta<void>, value
6 metaPair &add(const Meta<void> &kwd,␣

→˓const T &val = T{}, const CONVERTER &
→˓converter = CONVERTER{});

7

8 // Meta<TYPE>, value
9 metaPair &add(const Meta<TYPE,CONVERTER>␣

→˓&kwd, const T &val = T{});
10 metaPair &add(const Meta<TYPE,CONVERTER>␣

→˓&kwd, const Defaulted<T> &def);
11

12 // Meta<optional>, value
13 metaPair &add(const Meta<optional<TYPE>,

→˓CONVERTER> &kwd, const T &
→˓val = T{});

14 bool add(const Meta<optional<TYPE>,
→˓CONVERTER> &kwd, const optional <T> &
→˓opt);

15 bool add(const Meta<optional<TYPE>,
→˓CONVERTER> &kwd, const Defaulted<T> &
→˓def);

16

17 // Meta<Defaulted>, value
18 metaPair &add(const Meta<Defaulted<TYPE>,

→˓CONVERTER> &kwd, const T &
→˓val = T{});

19 bool add(const Meta<Defaulted<TYPE>,
→˓CONVERTER> &kwd, const optional <T> &
→˓opt);

20 bool add(const Meta<Defaulted<TYPE>,
→˓CONVERTER> &kwd, const Defaulted<T> &
→˓def);

Children

1 // string
2 Node &add(const string &name = "");
3

4 // value
5 Node &add(const T &val);
6 Node &add(const Defaulted<T> &def);
7

8 // Child<void>, value
9 Node &add(const Child<void,ALLOW,void,

→˓FILTER> &kwd, const T &val = T{});
10

11 // Child<TYPE>, value
12 Node &add(const Child<TYPE,ALLOW,

→˓CONVERTER,FILTER> &kwd, const ␣
→˓T &val = T{});

13 Node &add(const Child<TYPE,ALLOW,
→˓CONVERTER,FILTER> &kwd, const Defaulted
→˓<T> &def);

14

15 // Child<optional>, value
16 Node &add(const Child<optional<TYPE>,

→˓ALLOW,CONVERTER,FILTER> &kwd, const ␣
→˓ T &val = T{});

17 bool add(const Child<optional<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const␣
→˓optional <T> &opt);

18 bool add(const Child<optional<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const␣
→˓Defaulted<T> &def);

19

20 // Child<Defaulted>, value
21 Node &add(const Child<Defaulted<TYPE>,

→˓ALLOW,CONVERTER,FILTER> &kwd, const ␣
→˓ T &val = T{});

22 bool add(const Child<Defaulted<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const␣
→˓optional <T> &opt);

23 bool add(const Child<Defaulted<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const␣
→˓Defaulted<T> &def);

24

25 // Child<*> w/allow::many, container
26 void add(const Child<TYPE,allow::many,

→˓CONVERTER,FILTER> &kwd, const CONTAINER
→˓<T,Args...> &container);

3.5 Conversion Scheme

3.6 Advanced Topics

CHAPTER

FOUR

HIGH-LEVEL INTERFACE

4.1 Component Base

4.1.1 Motivation
4.1.2 Capabilities
4.1.3 Usage Requirements

4.2 Main Structures

4.2.1 Examples

4.3 Field Concepts

4.3.1 Required
4.3.2 Optional
4.3.3 Defaulted

4.4 C++ Version-Specific

4.4.1 GNDS v1.9
4.4.2 GNDS v2.0

4.5 Python Bindings

CHAPTER

FIVE

SEARCH

CHAPTER

SIX

REFERENCE

6.1 Core Classes

6.1.1 Tree
6.1.2 Node
6.1.3 XML
6.1.4 JSON
6.1.5 Meta
6.1.6 Child
6.1.7 KeywordTup

6.2 I/O and Related

6.3 Node: Major Ca-
pabilities

6.3.1 meta()
6.3.2 one() and many()
6.3.3 child()
6.3.4 operator()
6.3.5 operator[]
6.3.6 MetaRef & ChildRef

6.4 Meta & Child Op-
erators

6.5 convert()

6.5.1 Tree/XML/JSON
6.5.2 For Metadata
6.5.3 For Child Nodes

6.6 Canned Key-
words

6.6.1 For Metadata
6.6.2 For Child Nodes
6.6.3 Special cases

6.7 High-Level Sup-
port

6.8 High-Level Inter-
face

6.8.1 GNDS Version 1.9
6.8.2 GNDS Version 2.0

6.9 Miscellaneous

CHAPTER

SEVEN

INDEX

2 CONTENTS

https://github.com/nlohmann/json
https://pugixml.org/
https://www.nndc.bnl.gov/endf/b8.0/gndsfiles.html
https://www.nndc.bnl.gov/endf/b8.0/gndsfiles.html
https://pugixml.org/
https://github.com/nlohmann/json
https://www.oecd-nea.org/jcms/pl_39689/specifications-for-the-generalised-nuclear-database-structure-gnds
https://www.oecd-nea.org/jcms/pl_39689/specifications-for-the-generalised-nuclear-database-structure-gnds

	INTRODUCTION & PRIMER
	Introduction
	Description
	Background
	Acknowledgements

	Building GNDStk
	Download
	Build & Test
	Summary
	Your Own Application
	Alternative: Bash Script
	Header-Only Library

	Tutorial
	Basics + Core Interface
	Minimal GNDStk-Aware Code
	Recommended Starting Point
	Namespace Hierarchy
	Core Interface

	Read and Write GNDS
	Read XML
	Files, Streams, Types
	Read & Write XML
	More Reads & Writes
	Read, Write, Compare
	Regarding JSON Files

	Data Structure “Direct”
	About Direct Access
	Tree vs. Node
	Content Preservation
	Node
	Pointers about Pointers
	Tree
	Direct-Access Examples
	XML and JSON

	Smart Query System
	GNDS Creation
	Advanced Examples

	BASIC CONSTRUCTS
	Primary Classes
	Tree
	Node
	XML
	JSON

	Node: Major Capabilities
	Query
	Add Data

	Functions
	foo
	bar
	etc

	Reading & Writing
	Miscellaneous Utilities
	Global Flags
	Diagnostics
	Notes
	Warnings
	Errors
	Context

	Other

	CORE INTERFACE
	Motivation
	Query System, Part 1
	Meta & Child
	Meta Class
	Child Class

	Operators
	Query Metadata
	Node.meta(string)
	Node.meta(Meta)
	Node(Meta)

	Query Child Nodes
	Node.one(string)
	Node.many(string)
	Node.child(Child)
	Node(Child)

	Query System, Part 2
	Sequence Queries
	Node.operator(…)

	Multi-Queries
	Node.operator(|)

	Conversion & Filters

	Creating Data
	Direct
	Using “Query” Objects
	Metadata
	Children

	Conversion Scheme
	Advanced Topics

	HIGH-LEVEL INTERFACE
	Component Base
	Motivation
	Capabilities
	Usage Requirements

	Main Structures
	Examples

	Field Concepts
	Required
	Optional
	Defaulted

	C++ Version-Specific
	GNDS v1.9
	GNDS v2.0

	Python Bindings

	SEARCH
	REFERENCE
	Core Classes
	Tree
	Node
	XML
	JSON
	Meta
	Child
	KeywordTup

	I/O and Related
	Node: Major Capabilities
	meta()
	one() and many()
	child()
	operator()
	operator[]
	MetaRef & ChildRef

	Meta & Child Operators
	convert()
	Tree/XML/JSON
	For Metadata
	For Child Nodes

	Canned Keywords
	For Metadata
	For Child Nodes
	Special cases

	High-Level Support
	High-Level Interface
	GNDS Version 1.9
	GNDS Version 2.0

	Miscellaneous

	INDEX

